Part:BBa_K5375000
Profilin 3
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 172
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Contents
Origin
Synthesized by company
Properties
Expression of Profilin 3
Usage and Biology
Profilin is a ubiquitously expressed protein that serves as a crucial regulator of actin polymerization. The cytoskeleton plays an integral role in various cellular physiological processes including locomotion, endocytosis, metabolism, signal transduction, and gene transcription. Pollen from trees, herbaceous plants, and weeds has been implicated in allergic reactions. To date, eleven specific IgE-reactive allergens derived from herbaceous plant pollen have been identified. Research indicates that these pollen allergens are categorized into several protein families such as expansins, profilins, and calcium-binding proteins. Profilins function as pan-allergens; they are conserved across plant species and can elicit allergic responses in multiple organisms.
Cultivation and Purification
We constructed pPICZαA-Profilin3-sfGFP and pPICZαA-HSP70-sfGFP using homologous recombination. The Profilin 3-sfGFP sequence was amplified by PCR with a length of 1146 bp. The Figure 1 indicates the band consistent with the results. For linearization of the pPICZαA plasmid, the EcoRI and SalI digestion and gel recovery, the pPICZαA fragment was obtained. The Figure 2 shows a band consistent with the target size. It indicates successful linearization of the pPICZαA plasmid.
Measurement and Characterization
We utilized DNA sequencing to determine the full nucleotide sequence of our reconstructed plasmids.
Reference
Davey R. J., & Moens P. D. (2020). Profilin: many facets of a small protein. *Biophysical reviews*, 12(4), 827–849. https://doi.org/10.1007/s12551-020-00723-3
Chen M., Xu J., Devis D., Shi J., Ren K., Searle I., & Zhang D. (2016). Origin and Functional Prediction of Pollen Allergens in Plants. *Plant physiology*, 172(1), 341–357. https://doi.org/10.1104/pp.16.00625
None |